Applications of carbon nanotubes
Carbon nanotubes (CNTs) are cylinders of one or more layers of Graphene (lattice). Diameters of single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) are typically 0.8 to 2 nm and 5 to 20 nm, respectively, although MWNT diameters can exceed 100 nm. CNT lengths range from less than 100 nm to 0.5 m. Individual CNT walls can be metallic or semiconducting depending on the orientation of the lattice with respect to the tube axis, which is called chirality. carbon nanotube production exceeded several thousand tons per year, used for applications in energy storage, automotive parts, boat hulls, sporting goods, water filters, thin-film electronics, coatings, actuators and electromagnetic shields, health care and environmental protection.
- Synthesis and device application of CNT
- Allotropes of carbon
- Molecular Electronics based on CNTs
- CNTs Biomedical Applications
Related Conference of Applications of carbon nanotubes
32nd International Conference on Advanced Materials, Nanotechnology and Engineering
39th International Conference on Materials Science and Engineering
12th International Conference and Expo on Ceramics and Composite Materials
24th International Conference and Exhibition on Materials Science and Chemistry
Applications of carbon nanotubes Conference Speakers
Recommended Sessions
- Advanced 2D Materials
- Carbon Materials in Energy
- Emerging Trends in graphene research
- Applications of Synthetic Graphite and Natural Graphite
- Applications of carbon nanotubes
- Applications of graphene in Energy and Biomedicals
- Carbon nanotubes and Graphene
- Electrochemistry of diamond and Nano carbon materials
- Graphene and other 2D materials
- Graphene modification and functionalization
- Graphene Synthesis
- Large scale Graphene production and characterization
- Nano Carbon Materials
- Novel Hybrid carbon materials
- Semiconductor materials and Nanostructures
Related Journals
Are you interested in
- Additive Manufacturing – 3D Printed Materials - Ceramics 2026 (Italy)
- Additive Manufacturing – 3D Printing - Material science-2026 (Italy)
- Advanced Ceramics – High Performance - Ceramics 2026 (Italy)
- Advanced Materials and Functional Devices - ADVANCED MATERIALS 2026 (France)
- Advanced Materials and Nanotechnology - ADVANCED MATERIALS 2026 (France)
- Bio-Ceramics – Healthcare Innovations - Ceramics 2026 (Italy)
- Biomaterials – Healthcare Innovations - Material science-2026 (Italy)
- Biomedical Nanotechnology - ADVANCED MATERIALS 2026 (France)
- Carbon Nanostructures and Graphene - ADVANCED MATERIALS 2026 (France)
- Ceramic Coatings – Wear & Thermal Protection - Ceramics 2026 (Italy)
- Ceramic-Polymer Hybrids – Multifunctional Materials - Ceramics 2026 (Italy)
- Ceramics – High-Performance Materials - Material science-2026 (Italy)
- Composite Materials - ADVANCED MATERIALS 2026 (France)
- Composites – Lightweight & Strong - Material science-2026 (Italy)
- Computational Materials – Modeling & Simulation - Material science-2026 (Italy)
- Energy & Electronic Materials – Functional Ceramics - Ceramics 2026 (Italy)
- Energy Materials – Batteries & Storage - Material science-2026 (Italy)
- Functional Nanostructures – Design & Fabrication - Material science-2026 (Italy)
- Functionally Graded Materials – Tailored Properties - Ceramics 2026 (Italy)
- Material Characterization – Testing & Analysis - Material science-2026 (Italy)
- Metal Alloys – Strength & Durability - Material science-2026 (Italy)
- Metal Matrix Composites – Strength & Durability - Ceramics 2026 (Italy)
- Miniaturization Technology - ADVANCED MATERIALS 2026 (France)
- Molecular biology and Materials science - ADVANCED MATERIALS 2026 (France)
- Nano Materials - ADVANCED MATERIALS 2026 (France)
- Nano Structures - ADVANCED MATERIALS 2026 (France)
- Nano Technology and Photonics Communication - ADVANCED MATERIALS 2026 (France)
- Nanocluster and Nanoscience - ADVANCED MATERIALS 2026 (France)
- Nanocomposites – Functional Applications - Ceramics 2026 (Italy)
- Nanomaterials – Advanced Applications - Material science-2026 (Italy)
- Nanometrology and Instrumentation - ADVANCED MATERIALS 2026 (France)
- Nanoparticle and Nanoscale Research - ADVANCED MATERIALS 2026 (France)
- Nanoparticle Synthesis and Applications - ADVANCED MATERIALS 2026 (France)
- Nanosensors Devices - ADVANCED MATERIALS 2026 (France)
- Nanotechnology-Basics to Applications - ADVANCED MATERIALS 2026 (France)
- Optical Materials and Plasmonics - ADVANCED MATERIALS 2026 (France)
- Photonic Materials – Optical & Electronics - Material science-2026 (Italy)
- Polymer Composites – Lightweight Solutions - Ceramics 2026 (Italy)
- Polymers – Functional & Smart Designs - Material science-2026 (Italy)
- Properties of Nano Materials - ADVANCED MATERIALS 2026 (France)
- Reinforced Composites – Strength Optimization - Ceramics 2026 (Italy)
- Science and Technology of Advanced Materials - ADVANCED MATERIALS 2026 (France)
- Smart Materials – Responsive & Adaptive - Material science-2026 (Italy)
- Spintronics - ADVANCED MATERIALS 2026 (France)
- Structural Composites – Aerospace & Automotive - Ceramics 2026 (Italy)
- Sustainable Ceramics – Eco-Friendly Materials - Ceramics 2026 (Italy)
- Sustainable Materials – Eco-Friendly Solutions - Material science-2026 (Italy)
- Thermal Barrier Materials – High-Temperature Performance - Ceramics 2026 (Italy)
- Thin Films – Coatings & Surface Engineering - Material science-2026 (Italy)
- Wear-Resistant Composites – Industrial Applications - Ceramics 2026 (Italy)
