Applications of graphene in Energy and Biomedicals
Graphene-enchaned lithium ion batteries could be used in higher energy usage applications now in smartphones, laptops and tablet PCs. Graphene has a great potential to use for low cost, flexible and highly efficient photovolatics devices due to its excellent electron-transport properties and carrier mobility. Single or few layered Graphene with less agglomeration, exhibit a higher effective surface area and better supercapictor. In hydrogen storage, hydrogen plays an important role in energy carriers. As a fuel of choice it is light weight, contains high energy density and emits no-harmful chemical by-products, hydrogen considered as a green energy. Graphene oxide has excellent characteristics as a nanomaterial for drug delivery. It expands for anticancer drugs to another non-cancer treatment diseases treatment. Using the fluorescence super-quenching ability of graphene to develop novel fluorescence resonance energy transfer biosensors. Cancer therapy made on exploration of graphene in drug delivery by in vitro test. For clinical cancer and other disease treatment, vivo behaviour of graphene loaded with drugs.
- Lithium-ion batteries
- Solarcells
- supercapictor energy storage
- Hydrogen storage and fuel cells
- Drug delivery and Gene delivery
- Biosensors and Bio imaging
Related Conference of Applications of graphene in Energy and Biomedicals
23rd International Conference and Exhibition on Materials Science and Chemistry
32nd International Conference on Advanced Materials, Nanotechnology and Engineering
Applications of graphene in Energy and Biomedicals Conference Speakers
Recommended Sessions
- Advanced 2D Materials
- Carbon Materials in Energy
- Emerging Trends in graphene research
- Applications of Synthetic Graphite and Natural Graphite
- Applications of carbon nanotubes
- Applications of graphene in Energy and Biomedicals
- Carbon nanotubes and Graphene
- Electrochemistry of diamond and Nano carbon materials
- Graphene and other 2D materials
- Graphene modification and functionalization
- Graphene Synthesis
- Large scale Graphene production and characterization
- Nano Carbon Materials
- Novel Hybrid carbon materials
- Semiconductor materials and Nanostructures
Related Journals
Are you interested in
- Carbon Nanostructures and Graphene - Materials Chemistry 2025 (France)
- Ceramics in Materials Science - Materials Chemistry 2025 (France)
- Chemical Engineering - Materials Chemistry 2025 (France)
- Fracture, Fatigue and Failure of Materials - Materials Chemistry 2025 (France)
- Industrial applications of crystallization - Materials Chemistry 2025 (France)
- Materials Science and Chemistry - Materials Chemistry 2025 (France)
- Mineralogy - Materials Chemistry 2025 (France)
- Nano pharmaceuticals - Materials Chemistry 2025 (France)
- Nanodentistry - Materials Chemistry 2025 (France)
- Nanotechnology Applications - Materials Chemistry 2025 (France)
- Photonic and Optical Materials - Materials Chemistry 2025 (France)
- Polymer Science and Applications - Materials Chemistry 2025 (France)
- Science and Technology of Advanced Materials - Materials Chemistry 2025 (France)
- Solid-State Chemistry and Physics - Materials Chemistry 2025 (France)
- Tissue Engineering - Materials Chemistry 2025 (France)
